结合时序直觉模糊粗糙集和TCN-BiGRU的城市轨道交通客流预测

Integration of Temporal Intuitionistic Fuzzy Rough Sets and TCN-BiGRU for Urban Rail Transit Passenger Flow Forecasting

  • 摘要: 提高城市轨道交通客流的预测效率与精度,对智慧城市交通系统的实现具有重要意义。近年来,深度学习作为一种强大的数据驱动方法,在客流预测任务中得到了广泛应用。然而,面对多源异构的高维数据,传统预测模型往往难以有效识别对输出结果影响最显著的特征属性。基于此,本文提出一种融合时序直觉模糊粗糙集(temporal intuitionistic fuzzy rough sets,TIFRS)、时序卷积网络(temporal convolutional networks,TCN)和双向门控循环单元(bidirectional gated recurrent units,BiGRU)的城市轨道交通客流预测模型。TIFRS能够在高维的时序数据属性中识别关键属性,TCN-BiGRU的组合模型增强了对时间序列数据信息的处理能力。算例表明,与其他模型相比,提出的TIFRS-TCN-BiGRU预测模型具有更好的预测效果。

     

    Abstract: Enhancing the efficiency and accuracy of urban rail transit passenger flow forecasting is crucial for developing intelligent transportation systems in smart cities. As a powerful data-driven approach, deep learning has been widely applied in this field. However, the high-dimensional, multi-source, and heterogeneous nature of the data makes it difficult for conventional models to identify the most influential features on prediction outputs. To address this issue, this paper proposes an integrated forecasting model that combines temporal intuitionistic fuzzy rough sets (TIFRS), temporal convolutional networks (TCN), and bidirectional gated recurrent units (BiGRU). The TIFRS method is employed to identify key attributes from high-dimensional temporal data, while the hybrid TCN-BiGRU architecture enhances the capability to capture temporal dependencies in time-series data. Case study results demonstrate that the proposed TIFRS-TCN-BiGRU model outperforms other benchmark models in prediction performance.

     

/

返回文章
返回