基于优化VMD-DTCWT的局放信号去噪方法

Denoising Method for Partial Discharge Signals Based on Optimized VMD-DTCWT

  • 摘要: 变压器局部放电检测是评估绝缘状态和预防故障的重要手段,但现场采集的变压器局部放电信号易受到背景噪声影响,需要通过去噪处理获取纯净信号。为此,提出一种基于改进VMD-DTCWT的局放信号去噪的方法。该方法基于峭度值准则采用改进的VMD算法初步去除了背景噪声中的窄带干扰噪声,其次通过使用美洲狮算法优化块阈值参数,进行双树复小波块阈值去噪,有效抑制白噪声干扰信号,最后使用自适应滤波器对背景噪声中的残余窄带干扰噪声进行滤除。实验结果表明,与传统去噪算法相比,提出的方法可以更有效地抑制噪声,使波形相似度系数在去除噪声后提高3%左右,更好地保留了局部放电信号的波形特征。

     

    Abstract: Partial discharge (PD) detection in power transformers is crucial for assessing insulation conditions and preventing failures. However, on-site PD signals are often contaminated by background noise, necessitating denoising to extract clean signals. To address this, an improved variational mode decomposition (VMD) dual-tree complex wavelet transform (DTCWT) denoising method is proposed. The method first employs modified VMD with a kurtosis-based criterion to preliminarily remove narrowband interference from background noise. Next, the puma optimizer (PO) algorithm optimizes the block threshold parameters for DTCWT based threshold denoising, effectively suppressing white noise. Finally, an adaptive filter eliminates residual narrowband interference. Experimental results demonstrate that, compared to conventional denoising methods, the proposed approach could effectively suppress noise, improving the waveform similarity coefficient by approximately 3% while better preserving PD signal characteristics.

     

/

返回文章
返回