基于分布式自适应PID的高速列车协同跟踪控制

Distributed Adaptive PID-based Cooperative Tracking Control for High-speed Trains

  • 摘要: 本文针对高速列车比例-积分-微分(proportion-integration-differentiation, PID)控制器运行过程中无法自适应调节参数的问题,提出基于改进自适应遗传算法(improved adaptive genetic algorithm, IAGA)-PID算法的高速列车分布式协同复合控制器。首先,将高速列车视为多智能体模型进行考虑并考虑其信息耦合,构建贴合实际运行过程中高速列车模型;其次,利用列车间的速度和位移信息设计IAGA-PID控制器,考虑列车间的所需距离应根据速度适当调整的需求,对人工势场法进行了创新性的应用,此外还充分考虑了列车在运行过程中可能遇到的不确定扰动所带来的影响,设计了滑模观测器来对扰动进行反馈与补偿。最后,以高速列车实际线路参数进行仿真研究,通过不同PID整定方法和有无观测器的对比实验显示,本文所提出的控制方法在速度跟踪控制方面具有明显的优势,能使所有列车快速、精确跟踪目标曲线,同时相邻列车间能保持安全追踪间隔,且对列车复杂的运行环境有较好的适应性。

     

    Abstract: This paper addresses the issue of the Proportional-Integral-Derivative(PID) controller in high-speed trains being unable to adaptively adjust parameters during operation, proposing a distributed cooperative composite controller based on the improved adaptive genetic algorithm(IAGA)-PID algorithm.First, the high-speed train is modeled as a multi-agent system, considering information coupling to construct a realistic operational model.Second, an IAGA-PID controller is designed using inter-train speed and displacement data, innovatively applying the artificial potential field method to adjust the required inter-train distance based on speed, while a sliding mode observer is designed to compensate for uncertain disturbances during operation.Finally, simulations using actual high-speed railway parameters demonstrate, through comparisons of different PID tuning methods and with/without the observer, that the proposed method significantly outperforms others in speed tracking control, enabling all trains to quickly and accurately follow the target profile, maintain safe tracking distances, and exhibit strong adaptability to complex operational environments.

     

/

返回文章
返回