改进PSO优化模糊神经网络的直齿锥齿轮混沌控制

Chaotic Control of Bevel Gear System Based on Improved PSO Optimization Fuzzy Neural Network

  • 摘要: 为研究7自由度直齿锥轮传动系统的混沌运动的控制问题,采用集中质量法建立齿轮系统的动力学模型,采用Runge-Kutta法数值求解获得了参数区间内的周期运动向混沌运动转迁规律。针对特定参数区域的混沌运动,以系统Poincaré截面上点的欧式距离作为输入,系统的可控参数的扰动量作为模糊神经网络的输出,构建模糊神经网络控制器。为解决粒子群算法容易陷入局部最优、收敛性差等问题,提出参数自适应和基于动态重心迁移的自适应Lévy飞行改进机制协同的粒子群算法,实现了模糊神经网络控制器的参数优化和快速收敛,从而避免了控制器参数的盲目性。数值仿真表明,该控制策略使相轨迹稳定至周期运动,该法为锥齿轮传动系统的非线性振动控制提供了具有普适性的方案。

     

    Abstract: In order to study the control problem of chaotic motion of 7-degree-of-freedom spur bevel wheel transmission system, the centralized mass method is used to establish the dynamic model of the gear system, and the Runge-Kutta method is used to solve the law of the transition from periodic motion to chaotic motion in the parameter interval.According to the chaotic motion of a specific parameter region, the disturbance of the control parameters of the system is used as the output of the fuzzy neural network, and the Euclidean distance of the Poincaré section of the system is used as the input, and the fuzzy neural network controller is constructed.To solve the problems that particle swarm optimization(PSO) is prone to fall into local optimum and has poor convergence, an improved PSO algorithm is proposed based on the adaptive Lévy flight mechanism with dynamic center migration and self-adaptive parameters.This improved algorithm is used to optimize the parameters of a fuzzy neural network controller and achieve rapid convergence, thus avoiding the blindness of controller parameters.Numerical simulation shows that the control strategy stabilizes the phase trajectory to periodic motion, and the method provides a universal solution for the nonlinear vibration control of the bevel gear transmission system.

     

/

返回文章
返回